# Brownian Motion - The Brownian Bridge Part II - Simulating A Random Path 

Gary Schurman, MBE, CFA

August, 2021

In this white paper we will simulate the random path of a Brownian motion via a Brownian bridge. To that end we will work through the following hypothetical problem from Part I...

## Our Hypothetical Problem

We are tasked with simulating a Brownian bridge between a start and end point given the following model parameters... [1]

## Table 1: Model Parameters

| Description | Value |
| :--- | :---: |
| Value of the Brownian motion at time zero | 0.00 |
| Value of the Brownian motion at time T | 1.35 |
| Time in years (T) | 2.00 |

Task: Simulate a random path between the Brownian motion's start and end points above.

## Model Equations

We defined the variable $a$ to be the known value of the Brownian motion at time $t(a)$, the variable $b$ to be the known value of the Brownian motion at time $t(b)$, and the variable $X_{t}$ to be the random value of the Brownian motion in the time interval $[t(a), t(b)]$. The equations for the mean and variance of $X_{t}$ from Part I are... [1]

$$
\begin{equation*}
X_{t} \text { mean }=b+\frac{(a-b)(t(b)-t)}{t(b)-t(a)} \ldots \text { and... } X_{t} \text { variance }=\frac{(t(b)-t)(t-t(a))}{t(b)-t(a)} \ldots \text { where... } t \in[t(a), t(b)] \tag{1}
\end{equation*}
$$

Using the mean and variance in Equation (1) above the equation for the random value of $X_{t}$ is...

$$
\begin{equation*}
X_{t}=\text { mean }+\sqrt{\text { variance }} z \ldots \text { where } \ldots z \sim N[0,1] \tag{2}
\end{equation*}
$$

## The Answer To Our Hypothetical Problem

Given the random draws in the table below our random path of the Brownian motion is...

| Time | Expected | NDRN |  |  |  |  |  |  | Iteration |  |  |  |
| :---: | :---: | ---: | :---: | :---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| in Years | Value | $\mathbf{z}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{3}$ |  |  |  |  |  |  |
| 0.0000 | 0.0000 | - | 0.0000 | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |  |  |
| 0.2500 | 0.1688 | -1.4629 | - | - | - | $\mathbf{- 0 . 1 1 8 2}$ |  |  |  |  |  |  |
| 0.5000 | 0.3375 | 0.5132 | - | - | $\mathbf{0 . 7 9 8 0}$ | 0.7980 |  |  |  |  |  |  |
| 0.7500 | 0.5063 | -0.9360 | - | - | - | $\mathbf{0 . 6 0 9 4}$ |  |  |  |  |  |  |
| 1.0000 | 0.6750 | 0.5766 | - | $\mathbf{1 . 0 8 2 7}$ | 1.0827 | 1.0827 |  |  |  |  |  |  |
| 1.2500 | 0.8438 | -0.9849 | - | - | - | $\mathbf{0 . 4 3 6 5}$ |  |  |  |  |  |  |
| 1.5000 | 1.0125 | -1.4594 | - | - | $\mathbf{0 . 4 8 6 7}$ | 0.4867 |  |  |  |  |  |  |
| 1.7500 | 1.1813 | -1.7047 | - | - | - | $\mathbf{0 . 3 1 5 7}$ |  |  |  |  |  |  |
| 2.0000 | 1.3500 | - | 1.3500 | 1.3500 | 1.3500 | 1.3500 |  |  |  |  |  |  |

Note: The bolded values in the random path table above are calculated amounts.

Our plan: Calculate the value of the Brownian motion between two known end points. Iterate until the path is filled out. For our random path we will perform three iterations.

Example: Iteration 2, row 7

$$
\left.\begin{array}{l|l|l|l|l}
a=1.0827 & b=1.3500 & t(a)=1.0000 & t(b)=2.0000 & t=\frac{t(a)+t(b)}{2}=1.5000 \tag{3}
\end{array} \right\rvert\, z=-1.4594
$$

Using Equations (1) and (3) above the equation for the mean of $X_{t}$ is...

$$
\begin{equation*}
X_{t} \text { mean }=1.3500+\frac{(1.0827-1.3500)(2.0000-1.5000)}{2.0000-1.0000}=1.2164 \tag{4}
\end{equation*}
$$

Using Equations (1) and (3) above the equation for the variance of $X_{t}$ is...

$$
\begin{equation*}
X_{t} \text { variance }=\frac{(2.0000-1.5000)(1.5000-1.0000)}{2.0000-1.0000}=0.2500 \tag{5}
\end{equation*}
$$

Using Equations (2), (4) and (5) above the value of our path at time $t=1.5000$ is...

$$
\begin{equation*}
X_{1.50}=1.2164+\sqrt{0.2500} \times-1.4594=0.4867 \tag{6}
\end{equation*}
$$

The graph of our Brownian bridge is...


## References

[1] Gary Schurman, The Brownian Bridge - Base Equations, August, 2021

